Complex plane: algebraic and geometric properties.
Tuesday, September 12, 2023
9:01 AM

Complex numbers as vectors. Addition and multiplication

$$
\begin{aligned}
& Z=a \rightarrow\binom{a}{b} \sim\binom{0}{1} \quad 1 \sim\binom{1}{0} \\
& \text { Notation: } a=\text { Ref } \\
& \text { 6: Imp } \\
& \mathbb{R}^{2} \text { with addition and multiplication } \\
& \mathbb{R} \text { itemitied with }\left\{\binom{a}{0}: a \in \mathbb{R}\right\} \text {. }
\end{aligned}
$$

Addition: usual Vector addition: $(a+i b)+(c+i d)=(a+c)+i(b+d)$

$$
\binom{a}{b}+\binom{c}{d}=\binom{a+c}{b+d}
$$

Multiplication: $(a+i b)(c+i d)=(a c-b d)+i(a d+b c)$

$$
\binom{a}{b} \cdot\binom{c}{d}=\binom{a c-b d}{a d+b c} \quad\binom{0}{1} \cdot\binom{0}{1}=\binom{-1}{0} .
$$

Notation: $\mathbb{C}:=\mathbb{R}^{2}$ with addition and multiplication.

Absolute value and conjugate

$$
\begin{equation*}
z=a+i b \quad \bar{z}=a-i b-\text { conjugate } . \tag{z}
\end{equation*}
$$

$\operatorname{Rez}=\frac{z+\bar{z}}{2}, \quad \operatorname{Im} z=\frac{z-\bar{z}}{2 i}=-\frac{i}{2}(z-\bar{z})$.

An example: Line $\begin{array}{ll}a x+b y=c & x=\frac{z+\bar{z}}{2} \\ a^{2}+b^{2} \neq 0\end{array} \quad y=\frac{z-\bar{z}}{2 i} \quad \frac{a-i b}{2} z+\frac{a+i b}{2} \bar{z}=c$

Real notat ion.

Properties

1) $\overline{z+w}=\bar{z}+\bar{w}$, just computation
2) $\overline{z w}=\bar{z} \bar{w}$
$\frac{\text { Absolute value: }}{|z|^{2}=x^{2}+y^{2}=(x+i y)(x-i y)=z \bar{z}=|\bar{z}|^{2}}$
Properties: $1 .|z w|=|z||w|$
2. $|z+w| \leq|z|+|w|$

Proof. 1.

$$
|z w|^{2}=z w \overline{z w}=z \bar{z} \cdot w \bar{w}=|z|^{2}|w|^{2} .
$$

2. The usual triangle inequality

Complex proof: $\left.|z+w|^{2}=(z+w)(\overline{z+w})=|z|^{2}+|w|^{2}+z \bar{w}+\bar{z} w=|z|^{2}+|w|^{2}+2 \operatorname{Re}(z \bar{w})\right)$ $\leq|z|^{2}+|w|^{2}+2|z||w|=(|z|+|w|)^{2}$

$$
\begin{aligned}
& \text { Notations: }: \begin{array}{l}
B(z, \delta)=\{w:|z-w|<\delta\}_{\text {open }} \\
\bar{B}(z, \delta)=\{w:|z-w| \leq s|-c| \text { cred }
\end{array} \text { balls centered at } z, \text { radius } \delta \text {. }
\end{aligned}
$$

Complex numbers form a field.
(P1) (Associative law for addition) $a+(b+c)=(a+b)+c$.
(P2) (Existence of an additive $a+0=0+a=a$. identity)
(P3) (Existence of additive inverses) $a+(-a)=(-a)+a=0$.
(P4) (Commutative law for addition) $a+b=b+a$.
(P5) (Associative law for multiplica- $a \cdot(b \cdot c)=(a \cdot b) \cdot c$. ion)
(P6) (Existence of a multiplicative $a \cdot 1=1 \cdot a=a ; 1 \neq 0$. identity)
(P7) (Existence of multiplicative $a \cdot a^{-1}=a^{-1} \cdot a=1$, for $a \neq 0$. inverses)
(P8) (Commutative law for multi- $a \cdot b=b \cdot a$. plication)
(P9) (Distributive law) $a \cdot(b+c)=a \cdot b+a \cdot c$.
$\frac{1}{z}=\frac{\bar{z}}{|z|^{2}}<z \bar{z}=|z|^{2}$
$\frac{w}{z}=\frac{w \bar{z}}{|z|^{2}}$

Matrix form of a Complex Number.
Fix $z=a+i b . M_{a p} W=x+i y \rightarrow z(x+i y)$ in vector form

$$
\binom{x}{y} \rightarrow\binom{a x-b y}{b x+a y}=\left(\begin{array}{cc}
a-b \\
b & a
\end{array}\right)\binom{x}{y}
$$

$M_{z}:=\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right) \quad M_{z} \vec{w}=z w$
More over: $\quad M_{z_{1}}+M_{z_{2}}=\left(\begin{array}{c}a_{1}-b_{1} \\ b_{1}\end{array} a_{1}\right)+\left(\begin{array}{cc}a_{2} & -b_{2} \\ b_{2} & a_{2}\end{array}\right)=\left(\begin{array}{cc}a_{1}+a_{2}-b_{1}-b_{2} \\ b_{1}+b_{2} & a_{1}+a_{2}\end{array}\right)=M_{z_{1}+z_{2}}$
$M_{z_{1}} \cdot M_{z_{2}}=\left(\begin{array}{cc}a_{1} & -b_{1} \\ b_{1} & a_{1}\end{array}\right)\left(\begin{array}{ll}a_{2} & -b_{2} \\ b_{2} & a_{2}\end{array}\right)=\left(\begin{array}{cc}a_{1} a_{2}-b_{1} b_{2} & a_{2} b_{1}+a_{1} b_{2} \\ -a_{2} b_{1} \cdot a_{1} b_{2} & a_{1} a_{2}-b_{1} b_{2}\end{array}\right)=M_{z_{1} z_{2}}$

$$
L e+M:=\left\{\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right), a, b \in \mathbb{R}\right\} .
$$

Then $\varphi: \mathbb{C} \rightarrow \mu, \phi(z):=M_{z}$-field isomorphism (bijection preserving and x).

What is $M_{\bar{z}}$?
M_{z}^{\top}

$$
M_{z}=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right), M_{z}^{\top}=\left(\begin{array}{cc}
a & l \\
-b & a
\end{array}\right)=M_{\bar{z}} .
$$

Remark. $z \rightarrow \bar{z}$ - linear map. What is the matrix?

Polar form of a Complex Number

$$
\begin{aligned}
& \left\{\begin{array}{ll}
i^{z} & z \text { in polar form }:(|z|, \theta) \\
\vdots & \theta \text {-angle with } \theta
\end{array} \mathbb{R}_{+}\right. \\
& \text {Real case: }(r, \theta) \longrightarrow\binom{r \cos \theta}{r \sin \theta} \\
& \text { Complex notation: } z=|z|(\cos \theta+i \sin \theta) \text {. } \\
& \text { Temporary notation: } \left.\operatorname{cis} \theta:=\cos \theta+i \sin \theta \text { (} e^{i \theta}-l a t e r\right) \text {. } \\
& |\operatorname{cis} \theta|=1 \text {. } \\
& z \sim \text { absolute value }|z| \\
& \rightarrow \theta=\operatorname{argz}-\text { not unique. } \arg z=\{\theta+2 \pi k, k \in \mathbb{Z}\} \in \mathbb{R} / \sim \quad x \sim y \Leftrightarrow x-y=2 \pi k, k \in \mathbb{Z} \text {. } \\
& \text { Principal value of argument: }-\pi<\operatorname{Arg} z \leq \pi \\
& \arg \bar{z}=-\arg z=\{\theta:-\theta \in \arg z\} . \\
& 2 \text { arg - well defined, does not depend on representative } \\
& \frac{\text { arg }}{2} \text {-is not! (Does depend on representative) }
\end{aligned}
$$

Rotation as a multiplication.
Rotation of \mathbb{R}^{2} - linear map.

$$
\begin{aligned}
& M_{a t r i x}:\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)=M_{\operatorname{cis} \theta} \quad-\sin \theta \\
& \operatorname{cis} \theta \cdot w=M_{\operatorname{cis} \theta} \vec{w}-w \text { rotated by } \theta . \quad \arg (\operatorname{cis} \theta \cdot w)=\arg \theta+\theta
\end{aligned}
$$

$z=|z| \operatorname{cis}(\arg z) . \quad z W=|z| \operatorname{cis}(\arg z) W$. $\quad z W=$ rotated byargz
$\forall \theta_{1}, \theta_{2} \in \operatorname{argz}, \quad c_{i} \theta_{1}=\operatorname{cis} \theta_{2}$. dilated by $|z|$.

Proof. 1) just done

(arg +argw-tak.e $\theta_{1} \in \operatorname{argz}$
2) $\arg \frac{z}{w}=\arg z-\arg w,\left|\frac{z}{w}\right|=\frac{|z|}{|w|}$
2) $\arg \frac{1}{w}=\arg \frac{\bar{W}}{|w|^{2}}=-\arg w\left(\arg w+\arg \frac{1}{w}=\arg 1\right) d$
N.B. Arg aw \quad Argz+Avgw -not always! Example?

$$
\begin{array}{ll}
z=w=-i & \text { Arg z }=\operatorname{Argw}=-\frac{\pi}{2} \\
z w=-1 & \text { Arg -1 }=\pi \pm-\frac{\pi}{2}+\left(-\frac{\pi}{2}\right)
\end{array}
$$

Abraham de Moivre

Trigonometry done right: deMoivre formula

$$
\begin{aligned}
& \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)=\operatorname{cis} \theta_{1} \cdot \operatorname{cis} \theta_{2} \quad \frac{\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)=\left(\cos \theta_{1}+i \sin \theta_{1}\right)\left(\cos \theta_{2}+i \sin \theta_{2}\right)}{d e \text { Moivreformula }} \\
& \cos \left(\theta_{1}+\theta_{2}\right)=\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2} \\
& \sin \left(\theta_{1}+\theta_{2}\right)=\cos \theta_{1} \sin \theta_{2}+\sin \theta_{1} \cos \theta_{2} \\
& \cos n \theta=\frac{1}{2}\left(\operatorname{cis}^{n} \theta+\overline{\operatorname{cis}^{n} \theta}\right)=\frac{1}{2}\left((\cos \theta+i \sin \theta)^{n}+(\cos \theta-i \sin \theta)^{n}\right)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k} C_{n}^{2 k} \sin ^{2 k} \theta \cos ^{n-2 k} \theta \\
& \sin n \theta=-\frac{i}{2}\left((\cos \theta+i \sin \theta)^{n}-(\cos \theta-i \sin \theta)^{n}\right)=\sum_{k=0}^{2 n}(-1)^{k} C_{n}^{2 k+1} \sin ^{2 k+1} \theta \cos ^{n-1-2 k} \theta
\end{aligned}
$$

Powers and Roots
Integer powers: $z^{n}=|z|^{n}$ cis (nargz) $n t \mathbb{N}, n \in \mathbb{Z}$

$$
\begin{aligned}
& i^{239}=1 \cdot \operatorname{cis}\left(239 \cdot \frac{\pi}{2}\right)=\operatorname{cis} \frac{3 \pi}{2}=-i \\
& (1+i)^{239}=(\sqrt{2})^{139} \operatorname{cis}\left(239 \frac{\pi}{9}\right)=\sqrt{2} \cdot 2^{119} \cdot \operatorname{cis} \frac{7}{4} \pi=2^{119}(1-i)
\end{aligned}
$$

Roots of 1. $z^{n}=1 .\left\{\begin{array}{l}n \operatorname{Argz} \in\{2 \pi k, k \in \mathbb{Z}\} \\ |z|=1\end{array}\right.$

$$
\arg \omega_{n}^{n-1}=
$$

$$
\arg \omega_{n}^{n-1}=
$$

$$
\omega_{n}:=C \text { is }\left(\frac{2 \pi}{n}\right) \cdot \underline{\omega_{n}^{2}} \underline{\text { Solutions: }} 1, \omega_{n}, \omega_{n}^{2}, \ldots, \omega_{n}^{n-1} \cdot\left\{\frac{2 \pi(n-1)}{n}+2 \pi k\right\}
$$

h th roots of $w \neq 0$: $z^{n}=w$
z_{1}, z_{2}-two roots. Then $\left(\frac{z_{1}}{z_{1}}\right)^{n}=\frac{w}{w}=1$. $20 \frac{z_{1}}{z_{2}}$-root of 1 !
20: n roots. $\quad z_{0}, z_{0} \omega_{n}, \ldots, z_{0} \omega_{n}^{n-1}$
$\left|z_{0}\right|=|\omega|^{1 / n} . n A r g z_{0} \in \arg W$.
nth Roots of Complex Numbers

$$
\begin{aligned}
& w=|w|(\cos \varphi+i \sin \varphi) \\
& \operatorname{can} \operatorname{ta} k e \\
& \quad z_{0}=|w|^{1 / n}\left(\cos \frac{\varphi}{n}+i \sin \frac{\varphi}{n}\right)
\end{aligned}
$$

